Stanowisko 4 – Kamień Krajeński (gm. Kamień Kraj.)

Morfologia, budowa wewnętrzna i mechanizm rozwoju ozów koło Kamienia Krajeńskiego

Michał Pasierbski, Adam Krupa


Na południe od Kamienia Krajeńskiego występują trzy wały ozowe rozpoznane jeszcze przez Murawskiego (1969). Dwa z nich stanowią przedłużenia rynny jez. Brzuchowo (ryc. B.11) i są to: oz

Ryc. B.11. Mapa hipsometryczna ozów koło Kamienia Krajeńskiego

Oz jez. Brzuchowo–Kamień Krajeński o długości 1700 m składa się z czterech segmentów, które wznoszą się od 2 do 9 m ponad powierzchnię wysoczynowy morenowej. Szerokość ich podstawy waha
się od 80 do 200 m, a grzbietu odpowiednio 10–70 m. Nachylenie stoków jest zmienne, lecz mieści się w przedziale od 5° do 15°. Pierwszy segment tego ozu, występujący na kontakcie z rynną jeziora Brzuchowo, ma 380 m długości i zmienną szerokość. Kolejny – 410 m i kształt silnie wygiętego rogala ze zróżnicowaną wysokością poszczególnych ramion: ramię zachodnie jest o 2,5 m wyższe od wschodniego i zachowuje kierunek NW–SE, natomiast ramię wschodnie wyodrębnia się z zachodniego 2,5 m poniżej jego grzbietu i „zmierza na powrót” w kierunku rynny. Trzeci segment o długości 340 m tworzy wspomniane już wcześniej skrzyżowanie.

Rozpoznanie powierzchniowej budowy grzbietów wskazuje, że oz jez. Brzuchowo-Dąbrowa tylko częściowo pokryty jest gliną


Do tej pory były znane przykłady krzyżowania się rynien subglacjalnych, lecz każdy z kierunków rynien przypisywany był niejako do innego nasunięcia lądolodu (Galon 1965). Trudno sobie wyobrazić, że krzyżujące się ozy mogą pochodzić z różnych nasunięć, wtedy bowiem jeden z nich powinien być formą kopalną. Zatem wydaje się, że wyeksploatowany oz o kierunku W–E powstał przy najmniej częściowo w szczelinie otwartej, jako oz intraglacjalny. W powyższej sytuacji można założyć krzyżowanie się szczelin z tunelem. Kształt ozu subglacjalnego (forma rogala) może sugerować, że okresowo przepływ wody w szczelinie był tak duży, że powodował przyblokowanie odpływu w tunelu, a nawet zmianę kierunku płynięcia wody (cofka). Powyższą tezę autorzy postanowili sprawdzić analizując charakter uwarstwienia i kierunki odpływu zapisane w osadach. W tym celu przebadano 5 m osadów w jednym profili usytuowanym w tym ramieniu rogala, gdzie spodziewano się przypuszczalnej cofki.

W dolnej części profilu występowały drobne piaski o uwarstwieniu riplemarków wstępujących (Src), ściętych w stropie przez piaski ze zwirem o uwarstwieniu przekątnym, płaskim (Sp), wskazującym na silny odpływ w kierunku południowym. Powyżej zalegały piaski o uwarstwieniu riplemarków wstępujących (Src). Piaski te, o zróżnicowanym uziarnieniu w układzie pionowym, przechodzą gwałtownie w mułek piaszczysty (Fm) wskazując na duże osłabienie przepływu. Po kolejnym ścięciu następuje duża zmiana w uziarnieniu, pojawiają się bowiem piaski i zwiry o przekątnym płaskim uwarstwieniu (Si), świadczącym o dużej dynamice płynięcia. Warstwowanie to przypomina charakterystyczny osad środkowego członu deltę. Jest to także kolejna ławica potwierdzająca odpływ w kierunku południowym. Powyższe osady zostały ścięte przez piaski o podobnym charakterze (Sp), które następnie przechodzą w coraz to drobniejsze piaski o uwarstwieniu riplemarków wstępujących (Src).
W stropie zostały one ścieżte przez gruboziarniste piaski i żwiry o warstwowaniu przekątnym płaskim (SGp) wskazującym na znacz-ną dynamicę i odpływ na południe. Po wyraźnym ścieciu pojawiają się piaski o równoleglej laminacji (Sh) wskazującej na nadkrytyczny przepływ – górne płaskie dno. Kolejne lawice narastające ku stropowi ozu wykazują podobną zmienność, tj. szybki przepływ i warstwowanie przekątnne płaskie, czasem rynnowe, oraz spowolnienie odpływu zaznaczające się zmianą uziarnienia do drobnych piasków i mułów o warstwowaniu płaskim lub o charakterze rplemarków wstępujących. Po tym znowu są widoczne efekty zwiększonej dy-namiki wód. Te zmiany uwarstwienia w połączeniu z kierunkami odpływu dowodzą, że przy silnym przepływie wody kierowały się na powrót do rynny jez. Brzuchowo, przy słabszym natomiast na północny kierunek odpływu. Powyższy rytm zmian kierunków odpływu wskazuje, że wschodnie ramię ozu wytworzyło się w wyniku powta-razujących się procesów zablokowania odpływu na północ i powsta-jącej w następstwie tego cofki.

Różnica wysokości ramion tego segmentu ozu może wskazy-wać, że w pewnym okresie otwarty został odpływ na północ. Ustało wtedy zjawisko cofki (zamałda akumulacja w ramieniu wschodnim), lecz rozwijało się nadal ramię zachodnie, w którym wody akumulo-wały jeszcze 2,5 m osadu. Po wypełnieniu tunelu osady ozowe zo-stały przykryte piaszczystą gliną zwałową o miąższości 1 m w ob-rębie grzbietu.

Stanowisko 5 – Charzykowy (gm. Chojnice)

Morfogeneza południowej części rynny
Jeziora Charzykowskiego

Michał Pasierbski

Południowa część Jeziora Charzykowskiego, usytuowana na grani- cy obszarów sandrowych i wysoczynowych oraz otoczona łukiem charzykowskich moren czołowych, wykazuje duże deniwelacje, prze-